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Abstract

One of the primary challenges of developmental
robotics is the question of how to learn and repre-
sent increasingly complex behavior in a self-motivated,
open-ended way. Barto, Singh, and Chentanez (Barto,
Singh, & Chentanez 2004; Singh, Barto, & Chentanez
2004) have recently presented an algorithm for intrin-
sically motivated reinforcement learning that strives to
achieve broad competence in an environment in a task-
nonspecific manner by incorporating internal reward
to build a hierarchical collection of skills. This pa-
per suggests that with its emphasis on task-general,
self-motivated, and hierarchical learning, intrinsically
motivated reinforcement learning is an obvious choice
for organizing behavior in developmental robotics. We
present additional preliminary results from a gridworld
abstraction of a robot environment and advocate a lay-
ered learning architecture for applying the algorithm
on a physically embodied system.

Introduction
One of the primary challenges of developmental robotics
is the question of how to learn and represent increas-
ingly complex behavior in a self-motivated, open-ended
way. We argue in this paper that, equipped with recent
advances pertaining to temporal abstraction and hier-
archy, reinforcement learning (RL) provides a promis-
ing framework for learning and representing hierarchical
skills. Indeed, we are presently engaged in ongoing re-
search in intrinsically motivated reinforcement learning,
an approach introduced by Barto, Singh, & Chentanez
(2004) wherein the primary reinforcement signal is gen-
erated within the agent, allowing it develop broad com-
petence in an environment in an open-ended fashion.

However, when applied näıvely to robotic tasks, RL
methods often struggle with the continuous and high di-
mensional state and action spaces and insufficient learn-
ing experience. In some cases a simpler and more ele-
gant solution is to layer learning, so that RL takes place
not over the raw sensor space, for instance, but rather
over a learned economical representation of that space
which facilitates RL.
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Thus, in this paper we:

• advocate a layered approach to learning architectures
for developmental robotics;

• advocate intrinsically motivated RL (Barto, Singh,
& Chentanez 2004; Singh, Barto, & Chentanez 2004)
as an especially promising approach to developmental
learning; and

• present preliminary results applying intrinsically mo-
tivated RL to a gridworld abstraction of a robot do-
main.

In the next section we briefly review RL and layered
learning. Next we review a recent success integrating
RL and behavior-based robotics, using a distributed
topological map as an intermediary layer. We then re-
view an algorithm for intrinsically motivated RL, and
present a simple gridworld experiment illustrating its
potential. Finally, we discuss the benefits of this ap-
proach and advocate a layered architecture for bringing
this approach to bear on embodied systems, as well as
other directions for future work.

Background

Reinforcement Learning
Reinforcement learning (Sutton & Barto 1998) aims to
solve the problem of a behaving agent learning to ap-
proximate an optimal behavioral policy through inter-
action with an environment. This generally takes the
form of learning to maximize a numerical reward signal
over time in a given environment. This reward signal is
the only learning feedback obtained from the environ-
ment, and thus RL falls somewhere between unsuper-
vised learning (where no signal is given at all) and su-
pervised learning (where a signal indicating the correct
action is given), which makes it well suited to develop-
mental robotics.

Most RL algorithms adapt dynamic programming
methods to focus on the most relevant parts of the value
space—behavioral trajectories. State or state-action
values are estimated from experience and “backed up”
to compute approximately optimal policies of actions—
those that maximize expected long-term reward. The
Markov decision process is a popular formalism in RL:
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at each stage the agent, in one of the set of possible
states, chooses from the set of available actions an ac-
tion, which presumably (stochastically) influences the
agent’s subsequent transition to the next state, receiv-
ing a reward in the process. The policy maps from
states and actions to probabilities of executing a given
action in a given state.

Options Options (Precup 2000; Sutton, Precup, &
Singh 1999) are a principled framework for temporal
abstraction in RL. Briefly, an option is roughly analo-
gous to a subroutine: it has an initiation set of states
in which it can be invoked, an internal policy mapping
states and actions to probabilities of execution, and a
termination condition mapping states to the probabil-
ity of the option terminating in that state. When an
option is invoked it follows its internal policy until ter-
mination; this allows an option to be considered a tem-
porally extended action, freeing the agent from needing
to choose an action at each step. One option’s policy
may call another option, creating an elegant mechanism
for behavioral hierarchy.

The options framework has a solid theoretical foun-
dation, extending Markov decision processes to semi-
Markov decision processes (Barto & Mahadevan 2003),
and two components of the options framework are par-
ticularly important to the algorithm presented below:

Option Models are probabilistic descriptions of the
effects of executing an option. They can be (approx-
imately) learned from experience, and allow stochas-
tic planning to be extended from primitive (one-step)
actions to higher levels of abstraction.

Intra-option Learning Methods allow the internal
policies of many options to be updated simultane-
ously, regardless of which option is actually execut-
ing.

In most of the work using options, the options must
be hand-designed by the engineer in advance. It is
clear that dynamically creating and learning options is
a desirable ability, and several researchers have recently
proposed methods for doing so, e.g. (Şimşek & Barto
2004), (McGovern 2002). This work falls into that cate-
gory, and is unique in that rather than creating options
tailored to a specific task, our algorithm creates options
based on intrinsic motivation.

Layered Learning
Because it has so many attractive properties, several
researchers have added RL capabilities to their robots.
However, applying RL directly over the robot’s (very
large) sensor space often leads to convergence problems
due to violations of the Markov assumption and the
sheer enormity of the space. One solution to this is the
use of layered learning to provide a suitably abstract
problem space that RL can solve efficiently.

It is now widely accepted that a layered and incre-
mental approach to designing robot control systems
(Brooks 1986) works well in practice, and further that

the interaction of layered, parallel control elements
can produce interestingly complex adaptive behavior
(Pfeifer & Scheier 1999).

By the same token, we argue that learning ele-
ments should be layered in a robot’s control system
in the same way that more static control elements
are. There are several examples of layering RL on
top of a behavioral basis, e.g. (Huber & Grupen
1997). The natural extension is to add additional learn-
ing layers in between. Layered learning (Stone 2000;
Utgoff & Stracuzzi 2002) means that we can use lower-
level learning elements to learn useful structures, dis-
cretizations, and behavior that can help make higher-
level learning feasible, and allows for the interaction of
several learning elements to generate complex adaptive
behavior.

One example of the approach described above is the
layered, distributed and asynchronous reinforcement
learning model developed by Konidaris & Hayes (2005).
RL was layered on top of a learned topological map,
which itself was layered on top of a reactive behavioral
substrate on a robot to perform puck foraging in an
artificial arena. The use of a reactive behavioral sub-
strate created conditions under which the topological
map could be easily learned, while the topological map
served to keep the state space small and task relevant.
This, coupled with the use of asynchronous and paral-
lelizable updates that took advantage of the fact that
computation is very much faster than action in embod-
ied domains, allowed the robot’s RL element to con-
verge in real time, between decisions.

This worked well, but the learning dynamics it dis-
played were those of traditional RL: a task-specific, ex-
ternally imposed reward function was used to achieve
a certain behavior, after which no additional learning
took place. The elegance of a layered architecture is
that these dynamics can be addressed at the level of
the RL layer, taking the lower behavioral and topologi-
cal levels for granted1. We thus turn our attention now
to a RL system designed to display the task-general,
open-ended learning dynamics emphasized in the de-
velopmental robotics approach.

Intrinsically Motivated Reinforcement
Learning

Barto, Singh, & Chentanez (2004) introduce a model of
intrinsically motivated reinforcement learning employ-
ing the options framework. The model is grounded in an
elaboration of the traditional conception of RL, wherein
the environment is “factored” into an external environ-
ment and an environment internal to the agent. It is
this internal environment which provides the reward
signal to the RL system. Note that this elaboration
still allows for rewards from the external environment:
these are simply “transduced” by the internal environ-
ment.

1In principle, at least. We recognize that in practice
things are rarely quite that simple.



In the traditional approach to RL the reward func-
tion is tailored specifically to the task at hand (navigat-
ing a maze, or winning at backgammon, for example),
and crafting this reward function can require significant
ingenuity. The notion of intrinsically motivated RL
is that the critic in the internal environment includes
the agent’s motivational system—and that this moti-
vational system should be sophisticated and general,
and should not need to be redesigned for each specific
task the agent undertakes. Driven by this task-general
intrinsic motivation, the agent builds up a hierarchical
collection of skills—in effect achieving broad competence
in its environment. These skills can then be applied to
any specific task the agent finds itself called upon to
learn.

There are many possibilities for the source of intrin-
sic motivation, including surprise, novelty (Huang &
Weng 2002), or “learning progress” (Kaplan & Oudeyer
2004). Thus far the neuroscience of dopamine neu-
rons (Horvitz, Stewart, & Jacobs 1997) has been the
most direct inspiration for the implemented model of
intrinsic motivation (Barto, Singh, & Chentanez 2004;
Singh, Barto, & Chentanez 2004), and our experiments
here also follow that path, although we plan to explore
other sources of intrinsic motivation in future work.

With its emphasis on task-general, self-motivated,
and hierarchical learning, intrinsically motivated RL is
an obvious choice for developmental robotics. Experi-
ence with intrinsic motivation in hierarchical RL is still
very preliminary, and the only experimental results to
date are on an abstract gridworld. This paper presents
an application of this approach to a domain intended
to be a stepping stone from the abstract environment
presented in (Barto, Singh, & Chentanez 2004) to a real
robotic domain. While still discrete and deterministic,
the domain is more “robot-like” than the prior work on
intrinsically motivated RL, and we believe that given
the appropriate support from other layers in a learning
architecture (such as a learned topological map), the
approach will be adaptable to real robotic applications.

We next describe the specifics of the intrinsically mo-
tivated RL algorithm used, which is based very closely
on the algorithm presented by Singh, Barto, & Chen-
tanez (2004), and then describe an experiment illustrat-
ing its behavior.

The Algorithm
The algorithm for intrinsically motivated RL departs
from traditional RL mostly in its use of intrinsic reward
to learn a collection of useful skills. In many other
respects the algorithm is a combination of established
algorithms for hierarchical RL. The description here,
although organized differently, is similar that in (Singh,
Barto, & Chentanez 2004), where further details can be
found.

Saliency Present implementations depend on the
hardwired salience of certain stimuli or events in the
agent’s environment (although it bears repeating that

the larger idea of intrinsically motivated RL does not
depend on this particular model of intrinsic motiva-
tion). For example, in the experiments described be-
low, changes in light or sound intensity are considered
salient. We consider such notions of saliency to be
roughly analogous to the saliency of certain stimuli—
such as the smell of food or movement of a potential
threat—that are hardwired by evolution into the ner-
vous systems of animals in nature. These stimuli are
by necessity specific to the animal’s ecological niche,
but are general with respect to specific settings within
that niche and with respect to specific tasks or skills
the animal undertakes.

Skills The first time the agent experiences a given
salient event it creates and initializes an option to bring
about that event. An event option’s initiation set is
initialized to include the state just prior to the salient
event, and the termination probability for the state in
which the event occurred is initialized to one. In addi-
tion, an option model is initialized for the event option,
estimating the probability of the option terminating in
a given state with a given cumulative reward when exe-
cuted from a given state. As the agent gains experience
the option’s initiation set grows to include states that
lead to states in the current initiation set, and when-
ever the agent experiences a salient event in a novel
state the termination probability of the option for that
event is set to one. The algorithm updates the option
policies and option models of all options simultaneously
using intra-option learning. Once initialized, an option
is available as an action to other options as well as to
the behavioral (top-level) policy, which provides an el-
egant and natural way of building a hierarchy of skills.

Intrinsic Reward The implementation of intrin-
sic reward associated with these salient stimuli is in-
spired by the response of dopamine neurons to nov-
elty (Horvitz, Stewart, & Jacobs 1997). The intrinsic
reward for the occurrence of a salient event is propor-
tional to the prediction error of that event in the learned
option model for that event. Thus when an event first
occurs, or occurs in a previously unexperienced context,
its intrinsic reward will initially be high (it will be ‘sur-
prising’ or ‘interesting’). While the event option policies
are updated only with respect to the extrinsic reward
signal (if any) and a (hardwired) reward for successfully
terminating an option, the behavioral policy incorpo-
rates the intrinsic reward in its update. Thus ‘surprise’
drives the agent to try to bring the event about. How-
ever, as the agent repeatedly does so it becomes better
at both bringing about and predicting the occurrence
of the event. As the event becomes more predictable it
becomes less rewarding (the agent gets ‘bored’). The
algorithm also naturally handles extrinsic reward, but
importantly it does not depend on it.

Behavior The agent behaves with an ε-greedy pol-
icy with respect to its behavioral action-value function.
The behavioral action-value function is learned through



a combination of Q-learning and SMDP planning, and
maps states and actions (initially only the primitive ac-
tions; options are included as they become available) to
their expected long-term reward.

An Experiment

We now present preliminary experimental results
demonstrating the performance of the algorithm. In
this work we assume the existence of lower layers of
learning sufficient for supporting a high level represen-
tation of the state and action spaces. This assump-
tion allows us to test our ideas in a simple gridworld,
where we can focus on the high-level behavior we wish
to demonstrate. While we believe the layered approach
successfully demonstrated by Konidaris & Hayes (2005)
and discussed above gives us cause to believe that this
temporary abstraction is justified, we also recognize the
danger of these assumptions. Future work integrating
intrinsically motivated RL into a layered learning archi-
tecture on a physically embodied robot will inevitably
present challenges not addressed in the present work,
but we do not believe this detracts from the promise
of intrinsically motivated RL as a layer driving open-
ended learning on developing robots.

Experimental Setup
The gridworld used in this work (figure 1) is an ab-
straction of a ‘playworld’ environment which has actu-
ally been built on an Aibo-scale by some of our col-
leagues for future experimentation with these ideas on
Aibo robots. The world consists of two rooms with a
door between them. There are push-panels on the walls
which, when pushed, turn the lights on or off or open
or close the door. The second room contains a charger.

The robot perceives its location and orientation (we
assume these are provided by the topological map, for
instance), a list of visible objects, light intensity, and
various sounds. It can move forward, rotate clockwise
or counterclockwise, approach any object it can see,
push a push-panel, or charge itself. Changes in light
and sound are hardwired as salient events.

The robot starts at a random location in the left
room, in the dark. It can see the glowing push-panel,
but it can not see the other push-panel or the door un-
til it has turned on the light by pushing the glowing
push-panel. Pushing the other push-panel will open
the door, causing an alarm to ring. When it is facing
the charger it may charge itself, which causes a bell to
ring and earns an extrinsic reward. A small extrinsic
punishment is given at each time step as a ‘cost of liv-
ing’. Every 250 steps the robot is ‘kidnapped’, and the
experiment is reset to initial conditions with the robot
placed in a random location in the left room.

The world was designed to include objects engaged
with varying levels of difficulty. Engaging the light
switch is easy, but engaging the charger requires a num-
ber of intermediate steps. Clearly, if the robot has al-
ready learned skills to turn the light on and open the

Figure 1: The gridworld environment.

door, these will be of use in learning to engage the
charger.

Results
Barto, Singh, & Chentanez (2004) present results from
applying the intrinsically motivated RL algorithm in a
smaller and more abstract gridworld. They show that
as expected (and, indeed, designed), the agent gains
competence by first learning to achieve ‘easy’ salient
stimuli, and then building on these skills to achieve
more ‘difficult’ stimuli. When the agent first encoun-
ters a salient stimulus it receives high intrinsic reward,
but as it learns to predict that event the level of intrin-
sic reward drops, until it encounters that event again
unexpectedly.

This work is ongoing and the results we report here
are similar but still very preliminary in nature. Figure
2 shows a record of salient event occurrences over the
course of the experiment. At the beginning the robot
quickly discovers and learns to predict turning the light
on and off. Later it learns to open and close the door,
and soon after learns to charge itself (ringing a bell),
a behavior which persists because it is extrinsically re-
warding.

Figure 3 plots the number of steps (from the initi-
ation of a testing period) to the achievement of each
of the salient events. An initial period of exploration is
visible in the first few thousand steps (due to optimistic
initial values). At about 2500 steps the robot starts to
consistently achieve the light on and off events, and at
roughly 12500 steps it discovers how to open the door
and ring the bell. A second period of exploration en-
sues, and at the end of the experiment we can see that
the robot has learned to consistently turn on the light,
open the door, and ring the bell efficiently. Note that
it also learns that turning the light off and closing the
door are not worth the effort.

Discussion and Future Work
While we believe intrinsically motivated reinforcement
learning has many features that make it an appeal-
ing approach to developmental robotics, it is clear that
much remains to be done to demonstrate the viability
of the approach. A first step is to more thoroughly
demonstrate the algorithm’s performance on the grid-
world presented above. Once that has been accom-
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Figure 2: Records of intrinsic rewards for the occurrence of salient events. The left plot shows the first 5000 steps of the
experiment, illustrating the exponential drop in intrinsic reward as salient events become predictable. The right plot shows
the full 25000 steps of the experiment in detail, with small intrinsic rewards for predicted salient events indicating sustained
charging behavior. The regular occurrence of the Light On event is due to the periodic ‘reset’ of the experiment.

plished, we hope to adapt the algorithm to one suitable
for application on a real robot. To do this we propose
adopting the layered approach discussed above in order
to provide the intrinsically motivated RL layer with a
tractable problem space.

One of the challenges of applying RL in the real world
is the issue of efficiency. No consideration of efficiency
has been made so far with respect to intrinsically moti-
vated RL, and there are several obvious improvements
that could be made (e.g. eligibility traces). As dis-
cussed above, the mismatch between computation time
for a RL update and the time it generally takes a robot
to take an action changes the efficiency dynamic dra-
matically, as it may be possible to perform dynamic
programming to the point of convergence between de-
cisions (Konidaris & Hayes 2005).

Other directions for future work are more specific
to the particular challenges of developmental robotics.
One shortcoming of the current model of intrinsic mo-
tivation is that intrinsic reward is based on a failure
to predict a (salient) event. However, as Kaplan &
Oudeyer (2003) have demonstrated, this can lead to un-
desirable behavior in environments involving areas with
dynamics that are difficult or impossible to predict. As
they and others have argued, a better approach is to
note that learning is most fruitful in a “zone of prox-
imal development”—areas that are learnable, neither
too predictable (already learned) nor too unpredictable
(impossible to learn). As mentioned briefly above, this

is just one of several sources of intrinsic motivation we
hope to explore.

It is also worth considering what level of primitive
actions are to be engineered and considered ‘innate’.
The present work assumes a relatively high-level be-
havioral basis, while much work in the developmental
robotics community concentrates on developing lower-
level sensorimotor coordination. While it is clear that
much is built-in in nature (e.g. some mammals can walk
within hours after being born), it is also clear that learn-
ing takes place to refine sensorimotor coordination (e.g.
Berthier, Rosenstein, & Barto 2005), and moving learn-
ing ‘down the hierarchy’ removes engineer bias (Blank,
Kumar, & Meeden 2002) and leaves more room for on-
line adaptation. To what extent intrinsic motivation
is important for such low-level learning is an open and
important question we hope to address in the future.

Conclusion
This paper has discussed an algorithm for intrinsically
motivated reinforcement learning and argued that it has
many characteristics that make it appealing for develop-
mental robotics. Intrinsic motivation drives the system
to learn and gain broad competence in a task-general
manner, and the hierarchical RL framework provides
an elegant means of building on previous learning in an
open-ended fashion. However, while intrinsically moti-
vated RL is well suited to situated learning, as currently
formulated it is not well suited to learning directly in
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gressive learning of increasingly complex skills can be seen.

the high-dimensional, continuous problem space that
physical embodiment involves. We thus advocated a
layered approach to learning architectures for develop-
mental robotics, wherein the lower layers of learning
provide a tractable space for the upper layers. Much
remains to be done, but we believe these ingredients
hold great promise for developmental robot learning.
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